论文标题

由投影性超曲面家族描述的品种的不合理性

Unirationality of varieties described by families of projective hypersurfaces

论文作者

Ciliberto, Ciro, Sacchi, Duccio

论文摘要

令$ \ mathscr {x} \ w $是一个统一的家庭,由$ d \ geq 2 $ in $ \ pp^n $具有dimular $ t $的单位,带有$ w $ w $ dimention $ r $的单位。我们证明,如果$ n $相对于$ d $,$ r $和$ t $足够大,则$ \ m m缩{x} $是不合理的。这扩展在\ cite {pre,hmp}中。

Let $\mathscr{X}\to W$ be a flat family of generically irreducible hypersurfaces of degree $d\geq 2$ in $\PP^n$ with singular locus of dimension $t$, with $W$ unirational of dimension $r$. We prove that if $n$ is large enough with respect to $d$, $r$ and $t$, then $\mathscr{X}$ is unirational. This extends results in \cite {Pre, HMP}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源