论文标题
单通道NyStröm近似混合精度
Single-pass Nyström approximation in mixed precision
论文作者
论文摘要
低等级矩阵近似值出现在许多科学计算应用中。我们考虑使用NyStröm方法,用于近似于正半数矩阵$ a $。如果$ a $很大,或者只能访问一次条目,则可能需要单个通行版本。在这项工作中,我们在两个精确度中对单人通nyström方法进行了完整的舍入错误分析,其中假定使用$ a $的昂贵矩阵产品计算在两个精度的下部进行。我们的分析洞悉了如何选择草图矩阵和偏移以确保稳定性,实施方面,这些方面已在文献中评论过,但尚未严格合理。 我们进一步开发了一种启发式方法来确定如何选择较低的精度,这证实了总体直觉,即近似的所需等级越低,我们可以使用的精度就越低。我们还证明,我们的混合精度NyStröm方法可用于廉价地为共轭梯度方法构造有限的内存预处理器,并得出A绑定所得的预处理系数矩阵的条件数。我们在一组具有各种光谱衰减的矩阵上介绍了数值实验,并证明了我们混合精度方法的实用性。
Low rank matrix approximations appear in a number of scientific computing applications. We consider the Nyström method for approximating a positive semidefinite matrix $A$. In the case that $A$ is very large or its entries can only be accessed once, a single-pass version may be necessary. In this work, we perform a complete rounding error analysis of the single-pass Nyström method in two precisions, where the computation of the expensive matrix product with $A$ is assumed to be performed in the lower of the two precisions. Our analysis gives insight into how the sketching matrix and shift should be chosen to ensure stability, implementation aspects which have been commented on in the literature but not yet rigorously justified. We further develop a heuristic to determine how to pick the lower precision, which confirms the general intuition that the lower the desired rank of the approximation, the lower the precision we can use without detriment. We also demonstrate that our mixed precision Nyström method can be used to inexpensively construct limited memory preconditioners for the conjugate gradient method and derive a bound the condition number of the resulting preconditioned coefficient matrix. We present numerical experiments on a set of matrices with various spectral decays and demonstrate the utility of our mixed precision approach.