论文标题
通过蒙特卡洛模拟复杂微观结构的概率故障机制
Probabilistic failure mechanisms via Monte Carlo simulations of complex microstructures
论文作者
论文摘要
在这项工作中提出了一种具有随机材料和几何特性的相位场脆性和延性裂缝的概率方法。在宏观失败力学中,假定空间量的材料特性和精确性(几何域中不同阶段)被认为是均匀且确定性的。这与材料和几何特性的较低尺度不同。通过模型问题中的一些不确定性来近似这种响应。提出的贡献致力于通过对发生脆性/延性故障的微观结构进行随机分析来建模不确定性的数学框架。在此,提出的模型采用各种代表性的体积元素,并在复合结构内随机分布僵硬和空隙。我们制定了一种分配策略来分配异质性并在二维和三维情况下生成相应的网格。然后,使用蒙特卡洛有限元技术来解决基于随机PDE的模型,并通过评估大量样品来近似脆性/延性故障的溶液场的期望和方差。为了预测故障机制,我们依赖相位场方法,该方法是广泛采用的框架,用于建模和计算固体中的断裂现象。一类梯度型耗散材料的增量扰动最小化原理用于得出扰动的管理方程。该分析使我们能够研究高度异构的微观结构并监测故障力学的不确定性。给出了几个数值示例以检查所提出方法的效率。
A probabilistic approach to phase-field brittle and ductile fracture with random material and geometric properties is proposed within this work. In the macroscopic failure mechanics, materials properties and exactness of spatial quantities (of different phases in the geometrical domain) are assumed to be homogeneous and deterministic. This is unlike the lower-scale with strong fluctuation in the material and geometrical properties. Such a response is approximated through some uncertainty in the model problem. The presented contribution is devoted to providing a mathematical framework for modeling uncertainty through stochastic analysis of a microstructure undergoing brittle/ductile failure. Hereby, the proposed model employs various representative volume elements with random distribution of stiff-inclusions and voids within the composite structure. We develop an allocating strategy to allocate the heterogeneities and generate the corresponding meshes in two- and three-dimensional cases. Then the Monte Carlo finite element technique is employed for solving the stochastic PDE-based model and approximate the expectation and the variance of the solution field of brittle/ductile failure by evaluating a large number of samples. For the prediction of failure mechanisms, we rely on the phase-field approach which is a widely adopted framework for modeling and computing the fracture phenomena in solids. Incremental perturbed minimization principles for a class of gradient-type dissipative materials are used to derive the perturbed governing equations. This analysis enables us to study the highly heterogeneous microstructure and monitor the uncertainty in failure mechanics. Several numerical examples are given to examine the efficiency of the proposed method.