论文标题

Sigmanet:一位统治所有人的拉普拉斯人

SigMaNet: One Laplacian to Rule Them All

论文作者

Fiorini, Stefano, Coniglio, Stefano, Ciavotta, Michele, Messina, Enza

论文摘要

本文介绍了Sigmanet,这是一种通用图形卷积网络(GCN),能够处理无方向性和有向图的权重,而权重不受限制或大小。 Sigmanet的基石是标志性的Laplacian($ L^σ$),这是我们在这项工作中介绍的新拉普拉斯矩阵。 $ l^σ$使我们能够通过将光谱GCN的理论扩展到具有正重量和负权重的(有向)图,从而弥合当前文献中的差距。 $ l^σ$表现出其他Laplacian矩阵所无法享受的几种理想特性,在这些矩阵上,几个最先进的体系结构都基于这些矩阵,其中以清晰而自然的方式编码边缘方向和重量,而不受重量幅度的负面影响。 $ l^σ$也完全不含参数,这不是其他Laplacian操作员,例如磁Laplacian。通过计算实验,充分证明了我们提出的方法的多功能性和性能。的确,我们的结果表明,对于至少一个度量,Sigmanet在21个案例中的15例中取得了最佳性能,即使是在21例中的第一批或第二好的表现,即使在与更复杂的体系结构相比,或者由于为狭窄的图表而设计的架构相比,也应该 - 但不能 - 但不能 - 没有 - 可以实现更好的性能。

This paper introduces SigMaNet, a generalized Graph Convolutional Network (GCN) capable of handling both undirected and directed graphs with weights not restricted in sign nor magnitude. The cornerstone of SigMaNet is the Sign-Magnetic Laplacian ($L^σ$), a new Laplacian matrix that we introduce ex novo in this work. $L^σ$ allows us to bridge a gap in the current literature by extending the theory of spectral GCNs to (directed) graphs with both positive and negative weights. $L^σ$ exhibits several desirable properties not enjoyed by other Laplacian matrices on which several state-of-the-art architectures are based, among which encoding the edge direction and weight in a clear and natural way that is not negatively affected by the weight magnitude. $L^σ$ is also completely parameter-free, which is not the case of other Laplacian operators such as, e.g., the Magnetic Laplacian. The versatility and the performance of our proposed approach is amply demonstrated via computational experiments. Indeed, our results show that, for at least a metric, SigMaNet achieves the best performance in 15 out of 21 cases and either the first- or second-best performance in 21 cases out of 21, even when compared to architectures that are either more complex or that, due to being designed for a narrower class of graphs, should -- but do not -- achieve a better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源