论文标题
详细的渐近扩展将划分为权力
Detailed asymptotic expansions for partitions into powers
论文作者
论文摘要
在这里,我们研究了$ n $大的$ k $ th powers的整数$ n $的方法。使用鞍点方法给出了赖特的一些渐近结果的简化证明,包括膨胀系数的精确公式。这些分区的凸度和对数洞穴显示为大型$ n $,并证明了ULA的更强有力的猜想。赖特的广义贝塞尔功能的渐近学也得到了处理。
Here we examine the number of ways to partition an integer $n$ into $k$th powers when $n$ is large. Simplified proofs of some asymptotic results of Wright are given using the saddle-point method, including exact formulas for the expansion coefficients. The convexity and log-concavity of these partitions is shown for large $n$, and the stronger conjectures of Ulas are proved. The asymptotics of Wright's generalized Bessel functions are also treated.