论文标题
学会从稀疏观测的时空图中重建缺少数据
Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations
论文作者
论文摘要
将多元时间序列建模为(可能动态)图上的时间信号是一个有效的表示框架,可以为时间序列分析开发模型。实际上,可以通过自回归图形神经网络来处理图形的离散序列,以在每个离散的时间和空间中递归地学习表示形式。时空图通常是高度稀疏的,其时间序列是由于不可靠的基础传感器网络,其特征是多个,并发和较长的丢失数据序列。在这种情况下,自回旋模型可能是脆弱的,并且表现出不稳定的学习动态。因此,本文的目的是解决学习有效模型的问题,即通过对可用观测值进行重建来调节重建,即重建,丢失数据点。特别是,我们提出了一类新颖的基于注意力的架构,这些结构鉴于一组高度稀疏的离散观测值,通过利用与插图任务一致的时空传播体系结构来学习时间和空间点的表示形式。表示形式是端对端训练的,以重建观测值W.R.T.相应的传感器及其相邻节点。与艺术的状态相比,我们的模型处理稀疏数据而不传播预测错误或要求双向模型向前和向后的时间依赖性编码。代表性基准的经验结果表明了该方法的有效性。
Modeling multivariate time series as temporal signals over a (possibly dynamic) graph is an effective representational framework that allows for developing models for time series analysis. In fact, discrete sequences of graphs can be processed by autoregressive graph neural networks to recursively learn representations at each discrete point in time and space. Spatiotemporal graphs are often highly sparse, with time series characterized by multiple, concurrent, and long sequences of missing data, e.g., due to the unreliable underlying sensor network. In this context, autoregressive models can be brittle and exhibit unstable learning dynamics. The objective of this paper is, then, to tackle the problem of learning effective models to reconstruct, i.e., impute, missing data points by conditioning the reconstruction only on the available observations. In particular, we propose a novel class of attention-based architectures that, given a set of highly sparse discrete observations, learn a representation for points in time and space by exploiting a spatiotemporal propagation architecture aligned with the imputation task. Representations are trained end-to-end to reconstruct observations w.r.t. the corresponding sensor and its neighboring nodes. Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies. Empirical results on representative benchmarks show the effectiveness of the proposed method.