论文标题

通过训练动态的选择性预测

Selective Prediction via Training Dynamics

论文作者

Rabanser, Stephan, Thudi, Anvith, Hamidieh, Kimia, Dziedzic, Adam, Bahceci, Israfil, Sediq, Akram Bin, Sokun, Hamza, Papernot, Nicolas

论文摘要

选择性预测是拒绝模型将错误预测的输入的任务。这涉及在输入空间覆盖范围(接受多少数据点)和模型实用程序(可接受数据点的性能如何良好)之间进行权衡。选择性预测的当前方法通常会对模型体系结构或优化目标施加约束;这抑制了它们在实践中的用法,并引入了与先前存在的损失功能的未知相互作用。与先前的工作相反,我们表明,只能通过研究模型的(离散)训练动力来实现最新的选择性预测性能。我们提出了一个通用框架,该框架在测试输入的情况下,监视指标,以捕获训练W.R.T.中获得的中间模型(即检查点)的预测不稳定。最终模型的预测。特别是,我们拒绝数据点在训练后期的最终预测表现出太多分歧。所提出的拒绝机制是域 - 不可思议的(即,它都适用于离散和实现的预测),并且可以灵活地与现有的选择性预测方法相结合,因为它不需要任何火车时间修改。我们对图像分类,回归和时间序列问题的实验评估表明,我们的方法在典型的选择性预测基准上击败了过去的最先进的准确性/实用性权衡。

Selective Prediction is the task of rejecting inputs a model would predict incorrectly on. This involves a trade-off between input space coverage (how many data points are accepted) and model utility (how good is the performance on accepted data points). Current methods for selective prediction typically impose constraints on either the model architecture or the optimization objective; this inhibits their usage in practice and introduces unknown interactions with pre-existing loss functions. In contrast to prior work, we show that state-of-the-art selective prediction performance can be attained solely from studying the (discretized) training dynamics of a model. We propose a general framework that, given a test input, monitors metrics capturing the instability of predictions from intermediate models (i.e., checkpoints) obtained during training w.r.t. the final model's prediction. In particular, we reject data points exhibiting too much disagreement with the final prediction at late stages in training. The proposed rejection mechanism is domain-agnostic (i.e., it works for both discrete and real-valued prediction) and can be flexibly combined with existing selective prediction approaches as it does not require any train-time modifications. Our experimental evaluation on image classification, regression, and time series problems shows that our method beats past state-of-the-art accuracy/utility trade-offs on typical selective prediction benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源