论文标题

使用泊松近似可能性的流行病隔室模型的一致和快速推断

Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods

论文作者

Whitehouse, Michael, Whiteley, Nick, Rimella, Lorenzo

论文摘要

解决扩大流行病学推断对复杂和异质模型的挑战,我们引入了泊松近似可能性(PAL)方法。与流行的隔室建模方法相反,隔室建模的人口限制用于激励确定性模型,PALS源自有限的杂货,随机隔室模型的近似滤波方程,并且大种群限制驱动了最大PAL估计器的一致性。我们的理论结果似乎是第一个基于可能性的参数估计一致性结果,该结果适用于广泛观察到的随机隔室模型,并解决了较大的人口限制。 PALS易于实施,仅涉及基本算术操作,而没有调整参数,并且可以快速评估,不需要模型中的模拟,并且计算成本与人口规模无关。通过示例,我们演示了如何使用PALS:拟合流感的年龄结构化模型,利用Stan的自动分化;通过将pal嵌入顺序蒙特卡洛中,比较轮状病毒模型中的过度分散机制;并评估单位特异性参数在麻疹元群模型中的作用。

Addressing the challenge of scaling-up epidemiological inference to complex and heterogeneous models, we introduce Poisson Approximate Likelihood (PAL) methods. In contrast to the popular ODE approach to compartmental modelling, in which a large population limit is used to motivate a deterministic model, PALs are derived from approximate filtering equations for finite-population, stochastic compartmental models, and the large population limit drives consistency of maximum PAL estimators. Our theoretical results appear to be the first likelihood-based parameter estimation consistency results which apply to a broad class of partially observed stochastic compartmental models and address the large population limit. PALs are simple to implement, involving only elementary arithmetic operations and no tuning parameters, and fast to evaluate, requiring no simulation from the model and having computational cost independent of population size. Through examples we demonstrate how PALs can be used to: fit an age-structured model of influenza, taking advantage of automatic differentiation in Stan; compare over-dispersion mechanisms in a model of rotavirus by embedding PALs within sequential Monte Carlo; and evaluate the role of unit-specific parameters in a meta-population model of measles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源