论文标题

多框架盲解卷积和相位多样性,统计包含未校正的高阶模式

Multi-frame blind deconvolution and phase diversity with statistical inclusion of uncorrected high-order modes

论文作者

Löfdahl, Mats G., Hillberg, Tomas

论文摘要

用地面望远镜收集的图像遭受了模糊的地球大气中湍流的扭曲。自适应光学器件(AO)只能部分补偿这些影响。多框架盲解(MFBD)和斑点技术都没有将AO补偿的图像恢复到正确的功率谱和对比度。 MFBD只能补偿有限数量的低阶畸变,而留下未校正的高阶模式的尾巴。 AO校正数据的斑点恢复取决于AO校正的校准以及有关大气湍流高度分布的假设。我们寻求对MFBD进行改进,该改进结合了Speckle对湍流统计的用法,以说明高阶模式具有MFBD感知低阶模式的能力,而低阶模式可以通过AO部分纠正和/或包括固定或缓慢变化的工具词。我们修改图像形成模型,补充拟合的低阶波前畸变,并具有随机高阶畸变的尾巴。这些尾巴遵循kolmogorov统计数据的缩放到弗里德参数r0的估计值或测量值,这些值表征了数据收集时看到的强度。我们将其称为统计多样性(SD)。我们用无噪声合成数据测试MFBD,模拟了许多不同的R0和AO校正模式的数量。 SD在准确性和与不同的R0保持一致性上改善了还原图像的对比度和功率谱,而处理时间则没有损失。有了焦点多样性(FD),结果几乎是完美的。 SD还减少了拟合的波前参数中的错误。带有SD和FD的MFBD似乎对R0中的几种错误率有抵抗力。将SD添加到MFBD中显示出改善对比度和恢复图像中功率谱的巨大希望。对实际数据的进一步研究值得。

Images collected with ground-based telescopes suffer blurring and distortions from turbulence in Earth's atmosphere. Adaptive optics (AO) can only partially compensate for these effects. Neither multi-frame blind deconvolution (MFBD) nor speckle techniques restore AO-compensated images to the correct power spectrum and contrast. MFBD can only compensate for a finite number of low-order aberrations, leaving a tail of uncorrected high-order modes. Speckle restoration of AO-corrected data depends on calibrations of the AO corrections and assumptions regarding the height distribution of atmospheric turbulence. We seek to develop an improvement to MFBD that combines speckle's usage of turbulence statistics to account for high-order modes with the ability of MFBD to sense low-order modes that can be partially corrected by AO and/or include fixed or slowly changing instrumental aberrations. We modify the image-formation model, supplementing the fitted low-order wavefront aberrations with tails of random high-order aberrations. These tails follow Kolmogorov statistics scaled to estimated or measured values of Fried's parameter, r0, that characterize the strength of the seeing at the moment of data collection. We refer to this as statistical diversity (SD). We test MFBD with SD with noise-free synthetic data, simulating many different r0 and numbers of AO-corrected modes. SD improves the contrasts and power spectra of restored images, both in accuracy and in consistency with varying r0, without penalty in processing time. With focus diversity (FD), the results are almost perfect. SD also reduces errors in the fitted wavefront parameters. MFBD with SD and FD seems resistant to several percents of error in r0. Adding SD to MFBD shows great promise for improving contrasts and power spectra in restored images. Further studies with real data are merited.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源