论文标题
残留的交点和模块的核心
Residual Intersections and Core of Modules
论文作者
论文摘要
我们介绍了模块的残留相交的概念,并证明了它们的存在。我们表明,投影尺寸的一个模块具有Cohen-Macaulay残留相交,即它们满足相关的Artin-Nagata属性。然后,我们为满足某些同源条件的可定向模块的核心建立一个公式,从而将Corso,Polini和Ulrich的先前结果扩展到了投影一个模块的核心。最后,我们提供了满足我们假设的模块类别的示例。
We introduce the notion of residual intersections of modules and prove their existence. We show that projective dimension one modules have Cohen-Macaulay residual intersections, namely they satisfy the relevant Artin-Nagata property. We then establish a formula for the core of orientable modules satisfying certain homological conditions, extending previous results of Corso, Polini, and Ulrich on the core of projective one modules. Finally, we provide examples of classes of modules that satisfy our assumptions.