论文标题

DLTTA:跨域医学图像测试时间适应的动态学习率

DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain Medical Images

论文作者

Yang, Hongzheng, Chen, Cheng, Jiang, Meirui, Liu, Quande, Cao, Jianfeng, Heng, Pheng Ann, Dou, Qi

论文摘要

测试时间适应(TTA)越来越成为有效解决来自不同机构的医疗图像的跨域分布变化的重要主题。以前的TTA方法具有对所有测试样本使用固定学习率的共同限制。这种做法对于TTA来说将是最佳的,因为测试数据可能会顺序到达,因此分配变化的尺度将经常变化。为了解决这个问题,我们提出了一种新型的动态学习率调整方法,用于测试时间适应,称为DLTTA,该方法动态调节了每个测试图像的权重更新量,以说明其分布移位的差异。具体而言,我们的DLTTA配备了基于内存库的估计方案,可以有效地衡量给定的测试样本的差异。基于这种估计的差异,然后制定了动态学习速率调整策略,以实现每个测试样本的适当适应程度。我们的DLTTA的有效性和一般适用性在包括视网膜光学相干断层扫描(OCT)分割,组织病理学图像分类和前列腺3D MRI分割的三个任务上得到了广泛的证明。我们的方法可实现有效且快速的测试时间适应,并且比当前最新测试时间适应方法的性能一致。代码可在以下网址找到:https://github.com/med-air/dltta。

Test-time adaptation (TTA) has increasingly been an important topic to efficiently tackle the cross-domain distribution shift at test time for medical images from different institutions. Previous TTA methods have a common limitation of using a fixed learning rate for all the test samples. Such a practice would be sub-optimal for TTA, because test data may arrive sequentially therefore the scale of distribution shift would change frequently. To address this problem, we propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA, which dynamically modulates the amount of weights update for each test image to account for the differences in their distribution shift. Specifically, our DLTTA is equipped with a memory bank based estimation scheme to effectively measure the discrepancy of a given test sample. Based on this estimated discrepancy, a dynamic learning rate adjustment strategy is then developed to achieve a suitable degree of adaptation for each test sample. The effectiveness and general applicability of our DLTTA is extensively demonstrated on three tasks including retinal optical coherence tomography (OCT) segmentation, histopathological image classification, and prostate 3D MRI segmentation. Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods. Code is available at: https://github.com/med-air/DLTTA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源