论文标题
具有偏好启发的个性化算法追索
Personalized Algorithmic Recourse with Preference Elicitation
论文作者
论文摘要
算法求程(AR)是计算一系列操作的问题 - 一旦由用户执行,这些动作会推翻不良的机器决策。至关重要的是,操作的顺序不需要太多的努力才能实现。但是,大多数AR的方法都认为所有用户的操作都相同,因此可能会向某些用户建议不公平的昂贵追索计划。在这一观察结果的提示下,我们介绍了Pear,这是第一种人类在循环的方法,能够提供针对任何最终用户需求的个性化算法追索权。梨基于贝叶斯偏好启发的见解,再到迭代地通过向目标用户提出选择设置查询来完善动作成本的估计。查询本身是通过最大化选择的预期效用来计算的,这是信息增益的原则性度量,以计算成本估算和用户响应的不确定性。 Pear将启发纳入加固学习代理,再加上蒙特卡洛树搜索,以快速识别有希望的追索计划。我们对现实世界数据集的经验评估突出了梨如何在少数迭代中产生高质量的个性化追索权。
Algorithmic Recourse (AR) is the problem of computing a sequence of actions that -- once performed by a user -- overturns an undesirable machine decision. It is paramount that the sequence of actions does not require too much effort for users to implement. Yet, most approaches to AR assume that actions cost the same for all users, and thus may recommend unfairly expensive recourse plans to certain users. Prompted by this observation, we introduce PEAR, the first human-in-the-loop approach capable of providing personalized algorithmic recourse tailored to the needs of any end-user. PEAR builds on insights from Bayesian Preference Elicitation to iteratively refine an estimate of the costs of actions by asking choice set queries to the target user. The queries themselves are computed by maximizing the Expected Utility of Selection, a principled measure of information gain accounting for uncertainty on both the cost estimate and the user's responses. PEAR integrates elicitation into a Reinforcement Learning agent coupled with Monte Carlo Tree Search to quickly identify promising recourse plans. Our empirical evaluation on real-world datasets highlights how PEAR produces high-quality personalized recourse in only a handful of iterations.