论文标题

学习使用过程知识在Reddit帖子上使用抑郁症分流的过程知识自动化后续问题生成

Learning to Automate Follow-up Question Generation using Process Knowledge for Depression Triage on Reddit Posts

论文作者

Gupta, Shrey, Agarwal, Anmol, Gaur, Manas, Roy, Kaushik, Narayanan, Vignesh, Kumaraguru, Ponnurangam, Sheth, Amit

论文摘要

以深度语言模型(DLM)为动力的对话代理(CAS)在心理健康领域表现出了巨大的希望。显着地,CAS已用于为患者提供信息或治疗服务。但是,在现有工作中尚未探索CAS协助精神健康分析的实用性,因为它需要受控的后续问题(FQS),这些问题通常在临床环境中由精神卫生专业人员(MHP)引发和指导。在抑郁症的背景下,我们的实验表明,与没有PHQ-9数据集中的问题相比,与没有过程知识支持的DLMS相比,基于相似性和最长的共同子序列,基于相似性和最长的共同子序列匹配,基于相似性和最长的共同子序列匹配的DLM和过程知识分别基于相似性和最长的共同子序列匹配的FQS 12.54%和9.37%。尽管结合了过程知识,我们发现DLM仍然容易产生幻觉,即产生冗余,无关紧要和不安全的FQ。我们证明了使用现有数据集训练DLM来生成遵守临床过程知识的FQ的挑战。为了解决这一限制,我们与MHPS合作准备了一个扩展的基于PHQ-9的数据集。灵长类动物包含有关PHQ-9数据集中的特定问题是否已经在用户对心理健康状况的初始描述中得到回答的注释。我们使用灵长类动物在有监督的设置中训练DLM,以识别可以直接从用户的帖子中回答的PHQ-9问题中的哪些问题,哪些问题需要从用户那里获得更多信息。使用基于MCC分数的绩效分析,我们表明灵长类动物适合识别PHQ-9中的问题,这些问题可以指导生成DLMS降低适合协助分盘的受控FQ生成。数据集创建为这项研究的一部分:https://github.com/primate-mh/primate2022

Conversational Agents (CAs) powered with deep language models (DLMs) have shown tremendous promise in the domain of mental health. Prominently, the CAs have been used to provide informational or therapeutic services to patients. However, the utility of CAs to assist in mental health triaging has not been explored in the existing work as it requires a controlled generation of follow-up questions (FQs), which are often initiated and guided by the mental health professionals (MHPs) in clinical settings. In the context of depression, our experiments show that DLMs coupled with process knowledge in a mental health questionnaire generate 12.54% and 9.37% better FQs based on similarity and longest common subsequence matches to questions in the PHQ-9 dataset respectively, when compared with DLMs without process knowledge support. Despite coupling with process knowledge, we find that DLMs are still prone to hallucination, i.e., generating redundant, irrelevant, and unsafe FQs. We demonstrate the challenge of using existing datasets to train a DLM for generating FQs that adhere to clinical process knowledge. To address this limitation, we prepared an extended PHQ-9 based dataset, PRIMATE, in collaboration with MHPs. PRIMATE contains annotations regarding whether a particular question in the PHQ-9 dataset has already been answered in the user's initial description of the mental health condition. We used PRIMATE to train a DLM in a supervised setting to identify which of the PHQ-9 questions can be answered directly from the user's post and which ones would require more information from the user. Using performance analysis based on MCC scores, we show that PRIMATE is appropriate for identifying questions in PHQ-9 that could guide generative DLMs towards controlled FQ generation suitable for aiding triaging. Dataset created as a part of this research: https://github.com/primate-mh/Primate2022

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源