论文标题
单位切线束上翻译点的摩尔斯
Morse estimates for translated points on unit tangent bundles
论文作者
论文摘要
在本文中,我们研究了桑顿的猜想,这些猜想是在riemannian歧管的单位切线束的特殊情况下的翻译点数量最少。我们将自己限制在$ sm $的接触符号上,这些$ sm $将$ m $同型的差异化对身份的差异。我们证明存在序列$(p_n,t_n)$,其中$ p_n $是一个翻译的时间档点$ t_n $,带有$ t_n \ to+\ to+\ infty $,用于大型歧管。我们还证明了莫尔斯对Zoll Riemannian流形的翻译点数的估计。
In this article, we study conjectures of Sandon on the minimal number of translated points in the special case of the unit tangent bundle of a Riemannian manifold. We restrict ourselves to contactomorphisms of $SM$ that lift diffeomorphisms of $M$ homotopic to identity. We prove that there exist sequences $(p_n,t_n)$ where $p_n$ is a translated point of time-shift $t_n$ with $t_n\to+\infty$ for a large class of manifolds. We also prove Morse estimates on the number of translated points in the case of Zoll Riemannian manifolds.