论文标题
表征了大部分的可变X射线和紫外线通量行为
Characterizing the Variable X-ray and UV-Optical Flux Behavior of Blazars
论文作者
论文摘要
X射线和光学区域中Blazars的变异性既可以告知其发射区域的物理学,并且如果程序要求对象明亮或淡淡,则对观察者的位置要求。 Swift的广泛同时X射线和光学观察提供了对这些物体可变性质的最佳见解。该程序使用\ textIt {swift}数据,用于19 x射线亮料,通常在$ z> 0.1 $,以确定其可变性属性。该分析基于结构函数,并提供了有关变异性的性质及其依赖时间,光度和红移的洞察力。我们还考虑了在计划观察和获取数据之间的时间延迟,以观察亮度或高于平均水平的策略。这对于使用轨道X射线望远镜,当前或将来的观察至关重要。在固定的时间差(即30或100天)下,软X射线带的变异通常比在UV光学波长大的三到八倍。变化(X射线或紫外线)的幅度几乎没有差异,这是红移(时间延迟30天)的函数,而与光度的正相关相关。在X射线频带中,比正常情况更明亮的Blazar通常保持明亮至少2-3个月,尽管有明显的闪烁。当$ f_x> 0.9 f_ {x,avg} $时,可以避免通过安排观察值明显低于平均X射线通量的对象,这需要在调度活动的时间附近监视观察值。
The variability of blazars in the X-ray and optical regions informs both the physics of their emitting region and places demands on the observer if a program requires that the object be bright or faint. The extensive simultaneous X-ray and optical observation by Swift provides the best insight into the variable nature of these objects. This program uses \textit{Swift} data for 19 X-ray-bright blazars, generally at $z > 0.1$, to determine their variability properties. The analysis is based on structure functions and provides insight into the nature of the variability and how it depends on time, luminosity, and redshift. We also consider strategies for observing blazars at or above average brightness, given a time delay between planning an observation and obtaining the data. This is critical to observations with orbiting X-ray telescopes, current or future. The variability in the soft X-ray band is typically three to eight times larger than at UV-optical wavelengths, at fixed time differences (i.e., 30 or 100 days). There is almost no difference in the amplitude of variation (X-ray or UV-optical) as a function of redshift (time delay of 30 days) and a modest positive correlation with luminosity. In the X-ray band, blazars that become brighter than normal typically remain bright for at least 2-3 months, although with significant flickering. One can avoid observing objects that are significantly below the average X-ray flux by scheduling the observation when the $F_X > 0.9 F_{X,avg}$, which requires monitoring observations near the time of the scheduling activity.