论文标题

定时自动机的时间图模式

Temporal graph patterns by timed automata

论文作者

Aghasadeghi, Amir Pouya, Bussche, Jan Van den, Stoyanovich, Julia

论文摘要

时间图代表图表的演变,并且一直受到大量研究的关注。表达时间图模式或发现时间基础的工作通常假定相对简单的时间约束,例如旅程或更一般而言,存在的约束可能会随着有限的延迟而存在。在本文中,我们建议使用定时自动机来表达时间约束,从而导致时间基本图模式(BGP)的一般且强大的概念。新的困难是对一组比赛的时间约束的评估。定时自动机的一个重要好处是它们支持迭代状态分配,这对于早期检测和修剪非匹配可能很有用。我们介绍了算法以在图中检索所有时间BGP匹配的所有实例,并提供了广泛的实验评估的结果,证明了有趣的性能权衡。我们表明,在处理稀疏图上的循环模式时,可以逐步处理总匹配的按需算法。在无环图案或密集图上,当可以保证部分匹配的连通性时,通过随着时间的推移保持部分匹配并允许自动机评估可以完全增量来实现最佳性能。

Temporal graphs represent graph evolution over time, and have been receiving considerable research attention. Work on expressing temporal graph patterns or discovering temporal motifs typically assumes relatively simple temporal constraints, such as journeys or, more generally, existential constraints, possibly with finite delays. In this paper we propose to use timed automata to express temporal constraints, leading to a general and powerful notion of temporal basic graph pattern (BGP). The new difficulty is the evaluation of the temporal constraint on a large set of matchings. An important benefit of timed automata is that they support an iterative state assignment, which can be useful for early detection of matches and pruning of non-matches. We introduce algorithms to retrieve all instances of a temporal BGP match in a graph, and present results of an extensive experimental evaluation, demonstrating interesting performance trade-offs. We show that an on-demand algorithm that processes total matchings incrementally over time is preferable when dealing with cyclic patterns on sparse graphs. On acyclic patterns or dense graphs, and when connectivity of partial matchings can be guaranteed, the best performance is achieved by maintaining partial matchings over time and allowing automaton evaluation to be fully incremental.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源