论文标题

使用图形神经网络的图像关键点匹配

Image Keypoint Matching using Graph Neural Networks

论文作者

Xu, Nancy, Nikolentzos, Giannis, Vazirgiannis, Michalis, Boström, Henrik

论文摘要

图像匹配是计算机视觉中许多任务的关键组成部分,其主要目的是找到从不同自然图像提取的特征之间的对应关系。当图像表示为图形时,图像匹配归结为图形匹配的问题,而图匹配的问题在过去进行了深入研究。近年来,图神经网络在图形匹配任务中显示出很大的潜力,并且也应用于图像匹配。在本文中,我们提出了一个图像匹配问题的图形神经网络。所提出的方法首先使用局部节点嵌入在关键点之间生成初始的软对应关系,然后使用一系列图形神经网络层迭代地完善初始对应关系。我们使用关键点注释评估自然图像数据集的方法,并表明,与最先进的模型相比,我们的方法在不牺牲预测准确性的情况下加快了推理时间。

Image matching is a key component of many tasks in computer vision and its main objective is to find correspondences between features extracted from different natural images. When images are represented as graphs, image matching boils down to the problem of graph matching which has been studied intensively in the past. In recent years, graph neural networks have shown great potential in the graph matching task, and have also been applied to image matching. In this paper, we propose a graph neural network for the problem of image matching. The proposed method first generates initial soft correspondences between keypoints using localized node embeddings and then iteratively refines the initial correspondences using a series of graph neural network layers. We evaluate our method on natural image datasets with keypoint annotations and show that, in comparison to a state-of-the-art model, our method speeds up inference times without sacrificing prediction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源