论文标题

部分可观测时空混沌系统的无模型预测

Staggered Rollout Designs Enable Causal Inference Under Interference Without Network Knowledge

论文作者

Cortez, Mayleen, Eichhorn, Matthew, Yu, Christina Lee

论文摘要

随机实验被广泛用于估计各种领域的因果效应。但是,当一个人的治疗影响他人的结果时,经典的因果推断方法依赖于因网络干扰而违反的关键独立性假设。所有现有的方法至少需要对网络的近似知识,这可能是不可用的,并且收集的昂贵。我们考虑估计总治疗效果(TTE)的任务,或者当整个人群接受治疗与整个人群未经处理时的结果之间的平均差异。通过利用交错的推出设计,在该设计中逐渐对个体的随机子集进行治疗,我们为TTE提供了公正的估计量,这些估计量不依赖于网络的任何先前的结构知识,只要网络干扰效应限制在个人之间的邻居之间的低度相互作用。我们在估计器的方差方面得出了界限,并且在实验中表明,我们的估计器在模拟数据上对基准的表现良好。我们理论贡献的核心是交错的推出观测与多项式外推之间的联系。

Randomized experiments are widely used to estimate causal effects across a variety of domains. However, classical causal inference approaches rely on critical independence assumptions that are violated by network interference, when the treatment of one individual influences the outcomes of others. All existing approaches require at least approximate knowledge of the network, which may be unavailable and costly to collect. We consider the task of estimating the total treatment effect (TTE), or the average difference between the outcomes when the whole population is treated versus when the whole population is untreated. By leveraging a staggered rollout design, in which treatment is incrementally given to random subsets of individuals, we derive unbiased estimators for TTE that do not rely on any prior structural knowledge of the network, as long as the network interference effects are constrained to low-degree interactions among neighbors of an individual. We derive bounds on the variance of the estimators, and we show in experiments that our estimator performs well against baselines on simulated data. Central to our theoretical contribution is a connection between staggered rollout observations and polynomial extrapolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源