论文标题

基于层次记忆的动态图表学习原始记忆需求需求预测

Dynamic Graph Learning Based on Hierarchical Memory for Origin-Destination Demand Prediction

论文作者

Zhang, Ruixing, Han, Liangzhe, Liu, Boyi, Zeng, Jiayuan, Sun, Leilei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent years have witnessed a rapid growth of applying deep spatiotemporal methods in traffic forecasting. However, the prediction of origin-destination (OD) demands is still a challenging problem since the number of OD pairs is usually quadratic to the number of stations. In this case, most of the existing spatiotemporal methods fail to handle spatial relations on such a large scale. To address this problem, this paper provides a dynamic graph representation learning framework for OD demands prediction. In particular, a hierarchical memory updater is first proposed to maintain a time-aware representation for each node, and the representations are updated according to the most recently observed OD trips in continuous-time and multiple discrete-time ways. Second, a spatiotemporal propagation mechanism is provided to aggregate representations of neighbor nodes along a random spatiotemporal route which treats origin and destination as two different semantic entities. Last, an objective function is designed to derive the future OD demands according to the most recent node representations, and also to tackle the data sparsity problem in OD prediction. Extensive experiments have been conducted on two real-world datasets, and the experimental results demonstrate the superiority of the proposed method. The code and data are available at https://github.com/Rising0321/HMOD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源