论文标题
IFRNET:中级特征精炼网络,用于有效的框架插值
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
论文作者
论文摘要
盛行的视频框架插值算法从连续输入中生成中间帧,通常依靠具有重量参数或大延迟的复杂模型体系结构,从而阻碍了它们无法实时应用程序。在这项工作中,我们设计了一个高效的基于编码器码头的网络,称为IFRNET,以用于快速中间帧合成。它首先从给定的输入中提取金字塔特征,然后将双侧中间流场与功能强大的中间特征一起完善,直到生成所需的输出。逐渐完善的中间特征不仅可以促进中间流动估计,而且还可以补偿上下文细节,从而使IFRNET不需要其他合成或改进模块。为了充分释放其潜力,我们进一步提出了一种新型的面向任务的光流蒸馏损失,以专注于学习有用的教师知识朝框架合成。同时,在逐渐完善的中间特征上施加了一个新的几何一致性正规化项,以保持更好的结构布局。各种基准的实验证明了拟议方法的出色性能和快速推理速度。代码可在https://github.com/ltkong218/ifrnet上找到。
Prevailing video frame interpolation algorithms, that generate the intermediate frames from consecutive inputs, typically rely on complex model architectures with heavy parameters or large delay, hindering them from diverse real-time applications. In this work, we devise an efficient encoder-decoder based network, termed IFRNet, for fast intermediate frame synthesizing. It first extracts pyramid features from given inputs, and then refines the bilateral intermediate flow fields together with a powerful intermediate feature until generating the desired output. The gradually refined intermediate feature can not only facilitate intermediate flow estimation, but also compensate for contextual details, making IFRNet do not need additional synthesis or refinement module. To fully release its potential, we further propose a novel task-oriented optical flow distillation loss to focus on learning the useful teacher knowledge towards frame synthesizing. Meanwhile, a new geometry consistency regularization term is imposed on the gradually refined intermediate features to keep better structure layout. Experiments on various benchmarks demonstrate the excellent performance and fast inference speed of proposed approaches. Code is available at https://github.com/ltkong218/IFRNet.