论文标题
IRS辅助MEC系统具有二进制卸载:动态IRS横梁成形的统一框架
IRS Aided MEC Systems with Binary Offloading: A Unified Framework for Dynamic IRS Beamforming
论文作者
论文摘要
在本文中,我们开发了一个统一的动态智能反射表面(IRS)波束成型框架,以提高IRS辅助移动边缘计算(MEC)系统的总和计算率,其中每个设备都遵循二进制卸载策略。具体而言,每个设备的任务必须在本地执行,也必须借助给定数量的IRS Beam Forming向量可用。通过灵活控制IRS重新配置时间的数量,系统可以在性能和相关的信号开销之间达到平衡。我们的目标是通过共同优化每个设备的计算模式选择,卸载时间分配以及IRS跨时间的矢量来最大化总和计算率。由于最终的优化问题是非凸和NP-HARD,因此通常没有标准方法可以最佳地解决它。为了解决这个问题,我们首先提出了一种基于罚款的连续凸近似算法,其中同时优化了内层迭代中的所有相关变量,并确保获得的解决方案在本地最佳。然后,我们通过深入利用原始优化问题的内在结构来进一步得出每个设备的卸载激活条件。根据卸载激活条件,提出了一种基于连续的改进方法的低复杂算法以获得高质量的解决方案,这对于具有大量设备和IRS元素的实用系统更具吸引力。此外,揭示了提出的低复合算法的最佳条件。数值结果证明了我们提出的算法的有效性,并揭示了所提出的动态IRS波束形成框架的基本性能成本折衷。
In this paper, we develop a unified dynamic intelligent reflecting surface (IRS) beamforming framework to boost the sum computation rate of an IRS-aided mobile edge computing (MEC) system, where each device follows a binary offloading policy. Specifically, the task of each device has to be either executed locally or offloaded to MEC servers as a whole with the aid of given number of IRS beamforming vectors available. By flexibly controlling the number of IRS reconfiguration times, the system can achieve a balance between the performance and associated signalling overhead. We aim to maximize the sum computation rate by jointly optimizing the computational mode selection for each device, offloading time allocation, and IRS beamforming vectors across time. Since the resulting optimization problem is non-convex and NP-hard, there are generally no standard methods to solve it optimally. To tackle this problem, we first propose a penalty-based successive convex approximation algorithm, where all the associated variables in the inner-layer iterations are optimized simultaneously and the obtained solution is guaranteed to be locally optimal. Then, we further derive the offloading activation condition for each device by deeply exploiting the intrinsic structure of the original optimization problem. According to the offloading activation condition, a low-complexity algorithm based on the successive refinement method is proposed to obtain high-quality solutions, which is more appealing for practical systems with a large number of devices and IRS elements. Moreover, the optimal condition for the proposed low-complexity algorithm is revealed. Numerical results demonstrate the effectiveness of our proposed algorithms and also unveil the fundamental performance-cost tradeoff of the proposed dynamic IRS beamforming framework.