论文标题
人们在#blacklivesmatter和#stopasianhate中谈论什么?通过潜在的Dirichlet分配模型探索和分类在线社会运动中出现的Twitter主题
What are People Talking about in #BlackLivesMatter and #StopAsianHate? Exploring and Categorizing Twitter Topics Emerging in Online Social Movements through the Latent Dirichlet Allocation Model
论文作者
论文摘要
少数群体一直在使用社交媒体来组织社会运动,从而产生深远的社会影响。黑人生活问题(BLM)和停止亚洲仇恨(SAH)是两个成功的社会运动,在Twitter上传播,促进了抗议和活动,以抵抗种族主义,并提高公众对少数群体面临的其他社会挑战的认识。但是,以前的研究主要对推文或对用户的访谈进行了定性分析,这些推文或访谈可能并非全面和有效地代表所有推文。很少有研究以严格,量化和以数据为中心的方法探讨了BLM和SAH对话框中的Twitter主题。因此,在这项研究中,我们采用了一种混合方法来全面分析BLM和SAH Twitter主题。我们实施了(1)潜在的Dirichlet分配模型,以了解顶级高级单词和主题以及(2)开放编码分析,以确定整个推文中的特定主题。我们通过#BlackLivesMatter和#Stopasianhate主题标签收集了超过一百万条推文,并比较了它们的主题。我们的发现表明,这些推文深入讨论了各种有影响力的话题,社会正义,社会运动和情感情感都是两种运动的共同话题,尽管每个运动都有独特的子主题。我们的研究尤其是社交媒体平台上的社会运动的主题分析,以及有关人工智能,道德和社会相互作用的文献。
Minority groups have been using social media to organize social movements that create profound social impacts. Black Lives Matter (BLM) and Stop Asian Hate (SAH) are two successful social movements that have spread on Twitter that promote protests and activities against racism and increase the public's awareness of other social challenges that minority groups face. However, previous studies have mostly conducted qualitative analyses of tweets or interviews with users, which may not comprehensively and validly represent all tweets. Very few studies have explored the Twitter topics within BLM and SAH dialogs in a rigorous, quantified and data-centered approach. Therefore, in this research, we adopted a mixed-methods approach to comprehensively analyze BLM and SAH Twitter topics. We implemented (1) the latent Dirichlet allocation model to understand the top high-level words and topics and (2) open-coding analysis to identify specific themes across the tweets. We collected more than one million tweets with the #blacklivesmatter and #stopasianhate hashtags and compared their topics. Our findings revealed that the tweets discussed a variety of influential topics in depth, and social justice, social movements, and emotional sentiments were common topics in both movements, though with unique subtopics for each movement. Our study contributes to the topic analysis of social movements on social media platforms in particular and the literature on the interplay of AI, ethics, and society in general.