论文标题
n的指标和序列的分布
Metrics on N and the distribution of sequences
论文作者
论文摘要
在本文的第一部分中,定义了自然数量的自然度量的概念。 n的完成是一个紧凑的度量空间,以至于存在概率bore量的概率{n}均匀分布。给定度量是自然的必要条件。后来,我们研究了相对于给定的自然度量,序列的性质均匀连续。除其他定理5和8表征分布函数的连续性
In the first part of this paper the notion of natural metric on the set of natural numbers is defined. It is such metric that the completion of N is a compact metric space that a probability borel measure exists in order that the sequence {n} is uniformly distributed. A necessary and sufficient condition where a given metric is natural. Later we study the properties of sequences uniformly continuous with respect to given natural metric. Inter alia Theorems 5 and 8 characterise the continuity of distribution function