论文标题

累加神经元的字典学习

Dictionary Learning with Accumulator Neurons

论文作者

Parpart, Gavin, Gonzalez, Carlos, Stewart, Terrence C., Kim, Edward, Rego, Jocelyn, O'Brien, Andrew, Nesbit, Steven, Kenyon, Garrett T., Watkins, Yijing

论文摘要

本地竞争性算法(LCA)使用非加速泄漏的积分神经元之间的局部竞争来推断稀疏表示形式,从而可以在诸如Intel的Loihi处理器等大规模平行的神经形态架构上进行实时执行。在这里,我们专注于从流媒体视频中推断出稀疏表示的问题,该词使用时空特征的词典以无监督的方式优化以稀疏重建。非刺激性LCA先前已被用来实现无监督的时空词典学习,该时空词典由原始的,未标记的视频中的卷积内核组成。我们证明了如何使用累加神经元有效地实现了无监督的字典学习(\ hbox {s-lca}),该累加神经元结合了一种常规的泄漏 - 综合 - 射线(\ hbox {lif})峰值生成器,该峰值生成器将用于最小化的差异和集成的差异之间的差异和差异。我们展示了从分级到间歇性尖峰的各种动力学制度的词典学习,以推断从CIFAR数据库中绘制的静态图像的稀疏表示以及从DVS摄像机捕获的视频帧。在一项分类任务上,需要从DVS摄像机观察到的一台卡片牌中识别套件,我们发现性能中基本上没有降解,因为用于推断稀疏时空表示的LCA模型从分级迁移到尖峰。我们得出的结论是,累积神经元可能会提供未来神经形态硬件的强大组成部分,以实施在线无监督的时空词典学习,该时空词典优化了,用于从基于事件的DVS摄像机中稀疏地重建流媒体视频。

The Locally Competitive Algorithm (LCA) uses local competition between non-spiking leaky integrator neurons to infer sparse representations, allowing for potentially real-time execution on massively parallel neuromorphic architectures such as Intel's Loihi processor. Here, we focus on the problem of inferring sparse representations from streaming video using dictionaries of spatiotemporal features optimized in an unsupervised manner for sparse reconstruction. Non-spiking LCA has previously been used to achieve unsupervised learning of spatiotemporal dictionaries composed of convolutional kernels from raw, unlabeled video. We demonstrate how unsupervised dictionary learning with spiking LCA (\hbox{S-LCA}) can be efficiently implemented using accumulator neurons, which combine a conventional leaky-integrate-and-fire (\hbox{LIF}) spike generator with an additional state variable that is used to minimize the difference between the integrated input and the spiking output. We demonstrate dictionary learning across a wide range of dynamical regimes, from graded to intermittent spiking, for inferring sparse representations of both static images drawn from the CIFAR database as well as video frames captured from a DVS camera. On a classification task that requires identification of the suite from a deck of cards being rapidly flipped through as viewed by a DVS camera, we find essentially no degradation in performance as the LCA model used to infer sparse spatiotemporal representations migrates from graded to spiking. We conclude that accumulator neurons are likely to provide a powerful enabling component of future neuromorphic hardware for implementing online unsupervised learning of spatiotemporal dictionaries optimized for sparse reconstruction of streaming video from event based DVS cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源