论文标题
Quanestimation:用于量子参数估计的开源工具包
QuanEstimation: An open-source toolkit for quantum parameter estimation
论文作者
论文摘要
量子参数估计有望在理论上进行高精度测量,但是,如何在特定情况下(尤其是在实际条件下)设计最佳方案仍然是一个严重的问题,由于存在多种数学界限和优化方法,因此需要通过情况来解决。根据所考虑的情况,在计算复杂性和界限本身的紧密度方面,不同的界限可能或多或少合适。同时,需要针对实现复杂性,鲁棒性等进行测试。因此,一个包含各种界限和优化方法的综合工具包对于量子计量学方案设计至关重要。为了填补此空缺,我们在这里提出了一个基于Python-Julia的开源工具包,用于量子参数估计,其中包括许多良好使用的数学界限和优化方法。利用此工具包,方案设计中的所有过程,例如探针状态的优化,控制和测量,都可以轻松地进行,有效地执行。
Quantum parameter estimation promises a high-precision measurement in theory, however, how to design the optimal scheme in a specific scenario, especially under a practical condition, is still a serious problem that needs to be solved case by case due to the existence of multiple mathematical bounds and optimization methods. Depending on the scenario considered, different bounds may be more or less suitable, both in terms of computational complexity and the tightness of the bound itself. At the same time, the metrological schemes provided by different optimization methods need to be tested against realization complexity, robustness, etc. Hence, a comprehensive toolkit containing various bounds and optimization methods is essential for the scheme design in quantum metrology. To fill this vacancy, here we present a Python-Julia-based open-source toolkit for quantum parameter estimation, which includes many well-used mathematical bounds and optimization methods. Utilizing this toolkit, all procedures in the scheme design, such as the optimizations of the probe state, control and measurement, can be readily and efficiently performed.