论文标题
参考:用于在未知环境中部署自动群体的快速探索框架
REF: A Rapid Exploration Framework for Deploying Autonomous MAVs in Unknown Environments
论文作者
论文摘要
未知环境的探索和映射是自动机器人应用程序中的一项基本任务。在本文中,我们提供了一个完整的框架,用于在未知的地下地区部署自治探索任务中的MAV。探索算法的主要动机是描绘机器人的下一个最佳边界,以便可以快速,安全但有效的方式覆盖新的地面。拟议的框架使用一种新颖的边界选择方法,该方法还有助于在地下洞穴,矿山和城市地区等受阻区的自动驾驶机器人安全导航。这项工作中提出的框架分叉了本地和全球勘探中的勘探问题。拟议的勘探框架也可以根据机器人上板上可用的计算资源来适应,这意味着可以在探索速度和地图质量之间进行权衡。这样的功能使所提出的框架可以部署在地下探索,映射以及快速搜索和救援方案中。整个系统被认为是在类似隧道的环境中导航和物体定位的低复杂性和基线解决方案。在详细的仿真研究中评估了所提出的框架的性能,并与针对DARPA Sub-T挑战开发的高级探索计划框架进行了比较,因为它将在本文中介绍。
Exploration and mapping of unknown environments is a fundamental task in applications for autonomous robots. In this article, we present a complete framework for deploying MAVs in autonomous exploration missions in unknown subterranean areas. The main motive of exploration algorithms is to depict the next best frontier for the robot such that new ground can be covered in a fast, safe yet efficient manner. The proposed framework uses a novel frontier selection method that also contributes to the safe navigation of autonomous robots in obstructed areas such as subterranean caves, mines, and urban areas. The framework presented in this work bifurcates the exploration problem in local and global exploration. The proposed exploration framework is also adaptable according to computational resources available onboard the robot which means the trade-off between the speed of exploration and the quality of the map can be made. Such capability allows the proposed framework to be deployed in a subterranean exploration, mapping as well as in fast search and rescue scenarios. The overall system is considered a low-complexity and baseline solution for navigation and object localization in tunnel-like environments. The performance of the proposed framework is evaluated in detailed simulation studies with comparisons made against a high-level exploration-planning framework developed for the DARPA Sub-T challenge as it will be presented in this article.