论文标题

基于模拟器对Waldo的推断:通过利用预测算法和后估计器的置信区域的置信区域

Simulator-Based Inference with Waldo: Confidence Regions by Leveraging Prediction Algorithms and Posterior Estimators for Inverse Problems

论文作者

Masserano, Luca, Dorigo, Tommaso, Izbicki, Rafael, Kuusela, Mikael, Lee, Ann B.

论文摘要

在许多领域科学中使用了预测算法,例如深神经网络(DNN),以直接估计基于模拟器模型中感兴趣的内部参数,尤其是在观测值包括图像或复杂的高维数据的设置中。同时,现代神经密度估计量(例如标准化流量)在不确定性定量方面变得越来越流行,尤其是当参数和观测值都高维时。但是,参数推断是一个反问题,而不是预测任务。因此,一个开放的挑战是构建有条件的有效和精确的置信区域,并保证涵盖数据生成过程的真实参数,无论(未知)参数值是什么,并且不依赖大样本理论。确实已知许多基于模拟器的推理(SBI)方法会产生偏见或过于自信的参数区域,从而产生误导性的不确定性估计。本文介绍了Waldo,这是一种新的方法,可以通过利用SBI中广泛采用的预测算法或后估计量来构建具有有限样本有条件有效性的置信区。沃尔多(Waldo)重新构架了著名的WALD测试统计量,并使用基于计算有效的回归机械进行了经典的Neyman对假设检验的反转。我们将我们的方法应用于最近的高能物理问题,在该问题中,DNNS的预测以前导致了预测偏差的估计值。我们还说明了我们的方法如何纠正通过标准化流量计算的过于自信的后区域。

Prediction algorithms, such as deep neural networks (DNNs), are used in many domain sciences to directly estimate internal parameters of interest in simulator-based models, especially in settings where the observations include images or complex high-dimensional data. In parallel, modern neural density estimators, such as normalizing flows, are becoming increasingly popular for uncertainty quantification, especially when both parameters and observations are high-dimensional. However, parameter inference is an inverse problem and not a prediction task; thus, an open challenge is to construct conditionally valid and precise confidence regions, with a guaranteed probability of covering the true parameters of the data-generating process, no matter what the (unknown) parameter values are, and without relying on large-sample theory. Many simulator-based inference (SBI) methods are indeed known to produce biased or overly confident parameter regions, yielding misleading uncertainty estimates. This paper presents WALDO, a novel method to construct confidence regions with finite-sample conditional validity by leveraging prediction algorithms or posterior estimators that are currently widely adopted in SBI. WALDO reframes the well-known Wald test statistic, and uses a computationally efficient regression-based machinery for classical Neyman inversion of hypothesis tests. We apply our method to a recent high-energy physics problem, where prediction with DNNs has previously led to estimates with prediction bias. We also illustrate how our approach can correct overly confident posterior regions computed with normalizing flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源