论文标题

一类多维非线性扩散与伐木属性

A class of multidimensional nonlinear diffusions with the Feller property

论文作者

Criens, David, Niemann, Lars

论文摘要

在本说明中,我们考虑了一个非线性(条件)期望的家族,可以将其理解为多维扩散,不确定漂移和某些波动性。在这里,漂移是由以马尔可夫方式取决于时间和路径的设置值函数规定的。我们为相关的sublinear马尔可夫半群建立了伐木属性,并且随着框架具有足够的随机性,我们会观察到平滑效果。此外,我们将相应的值函数链接到半连接的kolmogorov方程。

In this note we consider a family of nonlinear (conditional) expectations that can be understood as a multidimensional diffusion with uncertain drift and certain volatility. Here, the drift is prescribed by a set-valued function that depends on time and path in a Markovian way. We establish the Feller property for the associated sublinear Markovian semigroup and we observe a smoothing effect as our framework carries enough randomness. Furthermore, we link the corresponding value function to a semilinear Kolmogorov equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源