论文标题

动力循环方程

Dynamical Loop Equation

论文作者

Gorin, Vadim, Huang, Jiaoyang

论文摘要

我们为二维相互作用的粒子系统的大型循环(或Dyson-Schwinger)方程式引入动力版本,包括Dyson Brownian Motion,非降低Bernoulli/Poisson随机步行,$β$ - 角落流程 - 拐角,均匀的和千斤顶的型号和千斤顶的麦克斯林图案,MacDonald Processes,$($)$($),$(Q. q. Q. Q.瓷砖。在技​​术假设下,我们表明动态循环方程会导致高斯场类型波动。 作为应用程序,我们计算了$(Q,κ)$的极限形状 - lozenge tilings上的分布,并证明它们的高度波动在适当的复杂结构中融合到高斯自由场。

We introduce dynamical versions of loop (or Dyson-Schwinger) equations for large families of two--dimensional interacting particle systems, including Dyson Brownian motion, Nonintersecting Bernoulli/Poisson random walks, $β$--corners processes, uniform and Jack-deformed measures on Gelfand-Tsetlin patterns, Macdonald processes, and $(q,κ)$-distributions on lozenge tilings. Under technical assumptions, we show that the dynamical loop equations lead to Gaussian field type fluctuations. As an application, we compute the limit shape for $(q,κ)$--distributions on lozenge tilings and prove that their height fluctuations converge to the Gaussian Free Field in an appropriate complex structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源