论文标题

系外星宿主星的银河化学演化:高质量行星系统是年轻的吗?

Galactic chemical evolution of exoplanet host stars: Are high-mass planetary systems young?

论文作者

Swastik, C., Banyal, Ravinder K., Narang, Mayank, Manoj, P., Sivarani, T., Rajaguru, S. P., Unni, Athira, Banerjee, Bihan

论文摘要

在不同的恒星种群中可以看到星系的恒星核合成和化学演化的烙印,老一代恒星显示出更高的$α$元素丰度,而后来的几代人则充满了铁峰元素。可以通过研究行星和宿主恒星特性的相互依存关系来推断,恒星及其行星伴侣的进化连接和化学特性可以推断出来。过去的大量研究证实,在金属富含金属的恒星周围通常发现高质量巨型行星,而低质量行星的恒星宿主具有广泛的金属性。在这项工作中,我们分析了从不同径向速度和过境调查中绘制的$> 900 $系托管托管星的样本的详细化学丰度。我们将$α$的恒星丰度趋势与行星的质量相关联。我们发现行星质量充足的相关性主要是$α$元素的阴性,而铁峰元素的差异为正或零,这表明托管巨型行星的恒星相对较年轻。这是由从等线拟合获得的宿主星的年龄进一步验证的。后来用铁和铁峰元素富集了原球材料,这也与通过核心吸积过程形成了巨型行星。原星磁盘中较高的金属分数有利于快速核心生长,因此为形成巨型行星提供了合理的途径。因此,这项研究表明观察到的恒星丰度和行星质量的趋势很可能是银河化学演化的自然结果。

The imprints of stellar nucleosynthesis and chemical evolution of the galaxy can be seen in different stellar populations, with older generation stars showing higher $α$-element abundances while the later generations becoming enriched with iron-peak elements. The evolutionary connections and chemical characteristics of circumstellar disks, stars, and their planetary companions can be inferred by studying the interdependence of planetary and host star properties. Numerous studies in the past have confirmed that high-mass giant planets are commonly found around metal-rich stars, while the stellar hosts of low-mass planets have a wide range of metallicity. In this work, we analyzed the detailed chemical abundances for a sample of $>900$ exoplanet hosting stars drawn from different radial velocity and transit surveys. We correlate the stellar abundance trends for $α$ and iron-peak elements with the planets' mass. We find the planet mass-abundance correlation to be primarily negative for $α$-elements and marginally positive or zero for the iron-peak elements, indicating that stars hosting giant planets are relatively younger. This is further validated by the age of the host stars obtained from isochrone fitting. The later enrichment of protoplanetary material with iron and iron-peak elements is also consistent with the formation of the giant planets via the core accretion process. A higher metal fraction in the protoplanetary disk is conducive to rapid core growth, thus providing a plausible route for the formation of giant planets. This study, therefore, indicates the observed trends in stellar abundances and planet mass are most likely a natural consequence of Galactic chemical evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源