论文标题

LELEK风扇是带有单个设置值键合函数的间隔的反向极限,其图为弧

The Lelek fan as the inverse limit of intervals with a single set-valued bonding function whose graph is an arc

论文作者

Banic, Iztok, Erceg, Goran, Kennedy, Judy

论文摘要

我们考虑一个闭合单位间隔的反向序列的族家族,具有单个上半连续的设置值键合函数,其图为弧;它是$ [0,1]^2 $的两个线段的联合,它们都包含原点$(0,0)$,具有正斜率,并扩展到$ [0,1]^2 $的相对边界。 我们表明,这些键合函数中有一个很大的亚家族$ \ MATHCAL f $,因此,对于\ Mathcal f $中的每个$ f \ f $,使用$ f $作为单个键合函数的封闭单位间隔的逆序列的反向序列是单个键合函数的,这是莱勒克风扇的同源。

We consider a family of inverse limits of inverse sequences of closed unit intervals with a single upper semi-continuous set-valued bonding function whose graph is an arc; it is the union of two line segments in $[0,1]^2$, both of them contain the origin $(0, 0)$, have positive slope, and extend to the opposite boundary of $[0,1]^2$. We show that there is a large subfamily $\mathcal F$ of these bonding functions such that for each $f\in \mathcal F$, the inverse limit of the inverse sequence of closed unit intervals using $f$ as a single bonding function, is homeomorphic to the Lelek fan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源