论文标题

用核心的随机动力学的弧形定律

Arcsine law for random dynamics with a core

论文作者

Nakamura, Fumihiko, Nakano, Yushi, Toyokawa, Hisayoshi, Yano, Kouji

论文摘要

在最近的论文[8]中,G.HATA和第四位作者首先给出了两个分段线性间隔图的随机迭代示例,而没有(确定性)漠不关心的周期性点,Arcsine定律的无限性动态表征无限性肌无力理论 - 持有。结果证明的关键是每个间隔图保留了一个马尔可夫分区。在本文中,我们通过引入核心随机动力学的概念来提供一类两个间隔图的随机迭代,而没有漠不关心的周期性,但可以满足Arcsine定律。作为应用,我们表明,广义的Arcsine定律适用于Gharaei-Homburg地图的广义HATA-YANO地图和分段线性版本,这两者通常都没有Markov分区。

In their recent paper [8], G.Hata and the fourth author first gave an example of random iterations of two piecewise linear interval maps without (deterministic) indifferent periodic points for which the arcsine law -- a characterization of intermittent dynamics in infinite ergodic theory -- holds. The key in the proof of the result is the existence of a Markov partition preserved by each interval maps. In the present paper, we give a class of random iterations of two interval maps without indifferent periodic points but satisfying the arcsine law, by introducing a concept of core random dynamics. As applications, we show that the generalized arcsine law holds for generalized Hata-Yano maps and piecewise linear versions of Gharaei-Homburg maps, both of which do not have a Markov partition in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源