论文标题
边界点,最小$ l^2 $积分和凹陷属性v-矢量束
Boundary points, minimal $L^2$ integrals and concavity property V -- vector bundles
论文作者
论文摘要
In this article, for singular hermitian metrics on holomorphic vector bundles, we consider minimal $L^2$ integrals on sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal $L^2$ integrals.作为应用程序,我们提出了凹面退化为线性的必要条件,模块的强大开放性属性和扭曲版本,一个模块强大开放性属性的有效性以及与模块相关的最佳支持功能。
In this article, for singular hermitian metrics on holomorphic vector bundles, we consider minimal $L^2$ integrals on sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal $L^2$ integrals. As applications, we present a necessary condition for the concavity degenerating to linearity, a strong openness property of the modules and a twisted version, an effectiveness result of the strong openness property of the modules, and an optimal support function related to the modules.