论文标题

超纤维知识图嵌入

Ultrahyperbolic Knowledge Graph Embeddings

论文作者

Xiong, Bo, Zhu, Shichao, Nayyeri, Mojtaba, Xu, Chengjin, Pan, Shirui, Zhou, Chuan, Staab, Steffen

论文摘要

最近的知识图(kg)嵌入是通过双曲几何形状来提出的,这是由于其代表层次结构的出色能力。但是,现实世界KG的拓扑结构是异质的,即,kg由多个不同的层次结构和非层次图结构组成。因此,同质(欧几里得或双曲线)几何形状不足以公平地代表这种异质结构。为了捕获KGS的拓扑异质性,我们提出了超出骨质(或伪里人)歧管中的超纤维kg嵌入(Ultrae),该歧管无缝地交织了双曲线和球形歧管。特别是,我们将每个关系建模为一种伪正交转换,可保留伪 - riemannian双线性形式。伪 - 正交转换分解为各种操作员(即圆形旋转,反射和双曲线旋转),从而可以同时对异质结构以及复杂的关系模式进行建模。三个标准千克的实验结果表明,超级表现优于先前的欧几里得和双曲线方法。

Recent knowledge graph (KG) embeddings have been advanced by hyperbolic geometry due to its superior capability for representing hierarchies. The topological structures of real-world KGs, however, are rather heterogeneous, i.e., a KG is composed of multiple distinct hierarchies and non-hierarchical graph structures. Therefore, a homogeneous (either Euclidean or hyperbolic) geometry is not sufficient for fairly representing such heterogeneous structures. To capture the topological heterogeneity of KGs, we present an ultrahyperbolic KG embedding (UltraE) in an ultrahyperbolic (or pseudo-Riemannian) manifold that seamlessly interleaves hyperbolic and spherical manifolds. In particular, we model each relation as a pseudo-orthogonal transformation that preserves the pseudo-Riemannian bilinear form. The pseudo-orthogonal transformation is decomposed into various operators (i.e., circular rotations, reflections and hyperbolic rotations), allowing for simultaneously modeling heterogeneous structures as well as complex relational patterns. Experimental results on three standard KGs show that UltraE outperforms previous Euclidean- and hyperbolic-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源