论文标题
一种用于减少构建能源预测性能差距的混合模型方法
A hybrid-model approach for reducing the performance gap in building energy forecasting
论文作者
论文摘要
在实践中,建筑域中预测和实际能源消耗之间的性能差距仍然是一个未解决的问题。该差距在当前的主流方法中的存在不同:第一原理模型和机器学习(ML)模型。受时间序列分解以识别不同不确定性的概念的启发,我们提出了一种混合模型方法,通过将这两种方法结合起来最小化这一差距:1。使用第一原理方法作为编码工具,以转换构建构建静态特征和可预测的时间序列模式中的时间序列模拟结果; 2。ML方法将结果与额外的输入与历史记录同时结合在一起,训练模型以捕获隐式性能差异,并对齐以校准输出。为了在实践中扩展这种方法,引入了建模过程中的新概念:信息水平(LOI),以利用模拟建模细节的投资与准确性提升之间的平衡。该方法在三年内进行了测试,每小时从上海的一座运营商业建筑中测量了能源负载。结果提出了主要的准确性:混合模型在预测方面显示出更高的准确性,具有更好的解释性;更重要的是,它可以在完善模拟中释放从业者对工作负载和计算资源进行建模。总而言之,该方法通过与数据驱动的方法建立模拟来整合域知识的联系。这种心态适用于解决通用工程问题,并导致提高预测准确性。结果和源数据可在https://github.com/researchgroup-g/performancegap-hybrid-apprace上获得。
The performance gap between predicted and actual energy consumption in the building domain remains an unsolved problem in practice. The gap exists differently in both current mainstream methods: the first-principles model and the machine learning (ML) model. Inspired by the concept of time-series decomposition to identify different uncertainties, we proposed a hybrid-model approach by combining both methods to minimize this gap: 1. Use the first-principles method as an encoding tool to convert the building static features and predictable patterns in time-series simulation results; 2. The ML method combines the results as extra inputs with historical records simultaneously, trains the model to capture the implicit performance difference, and aligns to calibrate the output. To extend this approach in practice, a new concept in the modeling process: Level-of-Information (LOI), is introduced to leverage the balance between the investment of simulation modeling detail and the accuracy boost. The approach is tested over a three-year period, with hourly measured energy load from an operating commercial building in Shanghai. The result presents a dominant accuracy enhancement: The hybrid-model shows higher accuracy in prediction with better interpretability; More important, it releases the practitioners from modeling workload and computational resources in refining simulation. In summary, the approach provides a nexus for integrating domain knowledge via building simulation with data-driven methods. This mindset applies to solving general engineering problems and leads to improved prediction accuracy. The result and source data are available at https://github.com/ResearchGroup-G/PerformanceGap-Hybrid-Approach.