论文标题

使用不确定性定量工具包扩展OpenKim,用于分子建模

Extending OpenKIM with an Uncertainty Quantification Toolkit for Molecular Modeling

论文作者

Kurniawan, Yonatan, Petrie, Cody L., Transtrum, Mark K., Tadmor, Ellad B., Elliott, Ryan S., Karls, Daniel S., Wen, Mingjian

论文摘要

原子模拟是材料建模的重要工具。原子间电位(IP)是这种分子模型的核心,模型预测的准确性在很大程度上取决于IP的选择。不确定性定量(UQ)是评估原子模拟可靠性的新兴工具。原子质模型(OpenKim)的开放知识基础是一个网络基础设施项目,其目标是收集和标准化IPS研究以实现透明的可重复性研究。 OpenKim框架的一部分是Python软件包,基于KIM的学习集成拟合框架(KLIFF),它为IP中的参数拟合到数据提供了工具。本文向Kliff介绍了UQ工具箱扩展名。我们专注于两种不确定性来源:参数的变化和IP功能形式的不足。我们的实施使用平行扭曲的马尔可夫链蒙特卡洛(PTMCMC),调整采样温度以估算IP功能形式引起的不确定性。我们在Stillinger上演示 - 韦伯潜能可以预测钻石构型中硅的原子能量和力。最后,我们重点介绍了应用和使用这些工具的一些潜在细微之处,并建议从业者和IP开发人员使用这些工具。

Atomistic simulations are an important tool in materials modeling. Interatomic potentials (IPs) are at the heart of such molecular models, and the accuracy of a model's predictions depends strongly on the choice of IP. Uncertainty quantification (UQ) is an emerging tool for assessing the reliability of atomistic simulations. The Open Knowledgebase of Interatomic Models (OpenKIM) is a cyberinfrastructure project whose goal is to collect and standardize the study of IPs to enable transparent, reproducible research. Part of the OpenKIM framework is the Python package, KIM-based Learning-Integrated Fitting Framework (KLIFF), that provides tools for fitting parameters in an IP to data. This paper introduces a UQ toolbox extension to KLIFF. We focus on two sources of uncertainty: variations in parameters and inadequacy of the functional form of the IP. Our implementation uses parallel-tempered Markov chain Monte Carlo (PTMCMC), adjusting the sampling temperature to estimate the uncertainty due to the functional form of the IP. We demonstrate on a Stillinger--Weber potential that makes predictions for the atomic energies and forces for silicon in a diamond configuration. Finally, we highlight some potential subtleties in applying and using these tools with recommendations for practitioners and IP developers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源