论文标题

评估非高斯噪声对寻找连续重力波的卷积神经网络的影响

Assessing the impact of non-Gaussian noise on convolutional neural networks that search for continuous gravitational waves

论文作者

Yamamoto, Takahiro S., Miller, Andrew L., Sieniawska, Magdalena, Tanaka, Takahiro

论文摘要

我们提出了一个卷积神经网络,该网络能够搜索连续的引力波,准单调的,持续信号是由不对称旋转的中子星引起的,在$ \ sim 1 $ \ sim 1 $年的模拟数据中,这些数据被非稳态的,窄带障碍所困扰,即,即,即,即。我们的网络学会了将输入应变数据分为四类:(1)仅高斯噪声,(2)注入高斯噪声中的天体物理信号,(3)(3)一条嵌入高斯噪声中的线,以及(4)一个由高斯噪声和线噪声污染的天体物理信号。在我们的算法中,不同频率被独立处理。因此,我们的网络与均匀间隔线的集合(即梳子)相对可靠,我们只需要在这项工作中考虑完美的正弦线即可。我们发现,我们的神经网络可以以高精度来区分天体物理信号和线条。在没有线路噪声的频带中,我们网络的灵敏度深度约为$ \ Mathcal {d}^{95 \%} \ simeq 43.9 $,误报概率为$ \ sim 0.5 \%$,而在线条噪声的情况下,我们可以维持$ \ sim 10 \ sim $ \ sim $ \ sim $ \ sim $ \ sim 10 \%$ \ \ sim $ \ sim的可能性。 $ \ MATHCAL {D}^\ MATHRM {95 \%} \ Simeq 3.62 $当线噪声振幅为$ H_0^\ Mathrm {line}/\ SQRT {S_ \ Mathrm {n}(n}(f_k)(F_K)} = 1.0 $ $。我们将方法的计算成本评估为$ o(10^{19})$浮点操作,并将其与标准的全天空搜索中的那些相提并论,从而抛弃了覆盖的参数空间之间的差异。我们的结果表明,与标准搜索相比,我们的方法比一两个数量级更有效。尽管我们的神经网络大约需要$ O(10^8)$ sec来使用我们当前的设施(GTX1080TI的单个GPU),但我们希望通过使用大量改进的GPU,可以将其降低到可接受的水平。

We present a convolutional neural network that is capable of searching for continuous gravitational waves, quasi-monochromatic, persistent signals arising from asymmetrically rotating neutron stars, in $\sim 1$ year of simulated data that is plagued by non-stationary, narrow-band disturbances, i.e., lines. Our network has learned to classify the input strain data into four categories: (1) only Gaussian noise, (2) an astrophysical signal injected into Gaussian noise, (3) a line embedded in Gaussian noise, and (4) an astrophysical signal contaminated by both Gaussian noise and line noise. In our algorithm, different frequencies are treated independently; therefore, our network is robust against sets of evenly-spaced lines, i.e., combs, and we only need to consider perfectly sinusoidal line in this work. We find that our neural network can distinguish between astrophysical signals and lines with high accuracy. In a frequency band without line noise, the sensitivity depth of our network is about $\mathcal{D}^{95\%} \simeq 43.9$ with a false alarm probability of $\sim 0.5\%$, while in the presence of line noise, we can maintain a false alarm probability of $\sim 10\%$ and achieve $\mathcal{D}^\mathrm{95\%} \simeq 3.62$ when the line noise amplitude is $h_0^\mathrm{line}/\sqrt{S_\mathrm{n}(f_k)} = 1.0$. We evaluate the computational cost of our method to be $O(10^{19})$ floating point operations, and compare it to those from standard all-sky searches, putting aside differences between covered parameter spaces. Our results show that our method is more efficient by one or two orders of magnitude than standard searches. Although our neural network takes about $O(10^8)$ sec to employ using our current facilities (a single GPU of GTX1080Ti), we expect that it can be reduced to an acceptable level by utilizing a larger number of improved GPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源