论文标题

具有唯一双拉拉斯特征值的整体拉普拉斯图,i

Integral Laplacian graphs with a unique double Laplacian eigenvalue, I

论文作者

Hameed, Abdul, Tyaglov, Mikhail

论文摘要

The set $S_{i,n}=\{0,1,2,\ldots,n-1,n\}\setminus\{i\}$, $1\leqslant i\leqslant n$ is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is $S_{i,n}$. S. Fallat等人建立了此类图的存在。在2005年。在本文中,我们调查了其拉普拉斯光谱具有$$的图形s _ {\ {i,j \} _ {n}^{m}} = \ {0,1,2,\ ldots,m-1,m,m,m,m+1,\ ldots,n-1,n \} $ m = n-1 $和$ m = n $。我们还显示图表之间的密切关系,实现$ s_ {i,n} $和$ s _ {\ {\ {i,j \} _ {n}^{m}} $,并讨论所谓的$ s_ {n,n} $ - $ s _ {\ {i,n \} _ {n}^{m}} $。

The set $S_{i,n}=\{0,1,2,\ldots,n-1,n\}\setminus\{i\}$, $1\leqslant i\leqslant n$ is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is $S_{i,n}$. The existence of such graphs was established by S. Fallat et al. in 2005. In this paper, we investigate graphs whose Laplacian spectra have the form $$ S_{\{i,j\}_{n}^{m}}=\{0,1,2,\ldots,m-1,m,m,m+1,\ldots,n-1,n\}\setminus\{i,j\},\qquad 0<i<j\leqslant n, $$ and completely describe those ones with $m=n-1$ and $m=n$. We also show close relations between graphs realizing $S_{i,n}$ and $S_{\{i,j\}_{n}^{m}}$, and discuss the so-called $S_{n,n}$-conjecture and the correspondent conjecture for $S_{\{i,n\}_{n}^{m}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源