论文标题
对特殊正式计划的模棱两可的动机融合
Equivariant motivic integration on special formal schemes
论文作者
论文摘要
我们根据Nicaise在数学上的文章进行构建。安。 2009年,对特殊正式方案的一数学动机一体化,使得在适用于代数的正式方案时,我们可以在2020年对以前的动机整合代数综合的代数动机整合来审视我们以前的作品。我们通过指出具有均衡的néron平滑性的存在来证明整体上不可或缺的变化公式的变化。我们还定义了正式功率系列的动机米尔诺纤维,并预测定义复杂分析功能细菌的动机米尔诺纤维是正确的数量。
We construct, based on Nicaise's article in Math. Ann. in 2009, an equivariant geometric motivic integration for special formal schemes, such that when applying to algebraizable formal schemes, we can revisit our previous work in 2020 on equivariant motivic integration for algebraic varieties. We prove the change of variable formula for the integral by pointing out the existence of an equivariant Néron smoothening for a flat generically smooth special formal scheme. We also define the motivic Milnor fiber of a formal power series and predict that it is the right quantity to define the motivic Milnor fiber of a germ of complex analytic functions.