论文标题
随机矩阵理论阐明了关键的非平衡现象
Random matrices theory elucidates the critical nonequilibrium phenomena
论文作者
论文摘要
磁系统进化的较早时间包含的信息超出了我们的想象。捕获简单测试床系统的不同时间演变的相关矩阵g,作为ISING模型,我们分析了不同温度的G^{T} G的特征值密度。我们观察到分布形状的过渡,从临界温度呈现特征值的间隙,并连续迁移到马尔森科 - 帕斯图尔定律中,用于顺磁性阶段。我们认为该分析是一种有希望的方法,可以在其他自旋系统中使用以表征相变。我们的方法与文献中的替代方法不同,因为它使用了磁化矩阵,而不是旋转的空间矩阵。
The earlier times of evolution of a magnetic system contain more information than we can imagine. Capturing correlation matrices G of different time evolutions of a simple testbed spin system, as the Ising model, we analyzed the density of eigenvalues of G^{T}G for different temperatures. We observe a transition of the shape of the distribution that presents a gap of eigenvalues from critical temperature with a continuous migration to the Marchenko-Pastur law for the paramagnetic phase. We consider the analysis a promising method to be applied in other spin systems to characterize phase transitions. Our approach is different from alternatives in the literature since it uses the magnetization matrix and not the spatial matrix of spins.