论文标题
由第一原理的支撑单原子链链的磁接地状态
Magnetic ground state of supported monatomic Fe chains from first principles
论文作者
论文摘要
基于结合梯度和牛顿 - 拉夫森方法的组合,提出了一种新的计算方案,以自谐和旋转密度功能理论中的能量最小化,从而确定磁原子簇的基态磁顺序。新的\ textit {ab intio}优化方法的适用性在沉积在不同金属基板上的Fe链上证明。详细分析了RH(111)上Fe链的磁接地状态,并与从包含基于第一原理相互作用参数的扩展的海森伯格模型中获得的那些进行了良好的比较。此外,监测了不同双线性自旋旋转相互作用在磁接地态形成中的影响。与先前的自旋模型结果相比,发现NB上的Fe链(110)具有相反旋转意义的自旋螺旋形构型,这暗示了高阶手性相互作用的重要性。在RE(0001)上,获得了Fe链的自旋刺激状态的波长,与扫描隧道显微镜实验良好一致。
A new computational scheme is presented based on a combination of the conjugate gradient and the Newton-Raphson method to self-consistently minimize the energy within spin-density functional theory, thus to identify the ground state magnetic order of a cluster of magnetic atoms. The applicability of the new \textit{ab initio} optimization method is demonstrated on Fe chains deposited on different metallic substrates. The obtained magnetic ground states of the Fe chains on Rh(111) are analyzed in details and a good comparison is found with those gained from an extended Heisenberg model containing first principles based interaction parameters. Moreover, the effect of the different bilinear spin-spin interactions in the formation of the magnetic ground states is monitored. In case of Fe chains on Nb(110) spin-spiral configurations with opposite rotational sense are found as compared to previous spin-model results which hints on the importance of higher order chiral interactions. The wavelength of the spin-spiral states of Fe chains on Re(0001) was obtained in good agreement with scanning tunneling microscopy experiments.