论文标题
模拟傅立叶序列的差异用于光谱措施
The divergence of Mock Fourier series for spectral measures
论文作者
论文摘要
在本文中,我们研究了傅立叶系列在cantor型分形测量中的分歧特性,也称为模拟傅立叶系列。我们给出了足够的条件,在该条件下,用于双倍频谱度量的模拟傅立叶级数在非零集合上有所不同。尤其是,存在一个四分之一cantor措施的例子,该措施的模拟傅立叶总和几乎无处不在。
In this paper, we study divergence properties of Fourier series on Cantor-type fractal measure, also called Mock Fourier series. We give a sufficient condition under which the Mock Fourier series for doubling spectral measure is divergent on non-zero set. In particularly, there exists an example of the quarter Cantor measure whose Mock Fourier sums is not almost everywhere convergent.