论文标题

SPD域特异性批处理归一化,以破解脑电图中易于解释的无监督域的适应

SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG

论文作者

Kobler, Reinmar J, Hirayama, Jun-ichiro, Zhao, Qibin, Kawanabe, Motoaki

论文摘要

脑电图(EEG)以毫秒的分辨率提供了非侵入性神经元动力学的访问,这使其在神经科学和医疗保健方面是可行的方法。但是,由于当前的脑电图技术并不能在没有昂贵的监督重新校准的情况下跨域(即会话和主题)跨越范围(即会话和主题),因此其实用性受到限制。当代方法将此转移学习(TL)问题作为一种多源/ - 目标无监督的域适应性(UDA)问题,并通过深度学习或浅层,Riemannian几何学意识到的对齐方式来解决它。到目前为止,这两个方向都无法始终将基于切线空间映射(TSM)在对称正定(SPD)歧管上的切线空间映射(TSM)的最新域特异性方法始终缩小。在这里,我们提出了一个基于理论的机器学习框架,该框架可以首次以端到端的方式学习域不变的TSM模型。为了实现这一目标,我们为几何深度学习提出了一个新的构建块,我们表示SPD域特异性动量批发归一化(SPDDSMBN)。 SPDDSMBN层可以将特定于域的SPD输入转换为域不变的SPD输出,并且可以轻松地应用于多源/-Target和在线UDA方案。在具有6种不同EEG脑部计算机界面(BCI)数据集的广泛实验中,我们获得了Sessions Intersession和-usubject TL的最新性能,并具有简单,本质上可解释的网络体系结构,我们表示TSMNET。

Electroencephalography (EEG) provides access to neuronal dynamics non-invasively with millisecond resolution, rendering it a viable method in neuroscience and healthcare. However, its utility is limited as current EEG technology does not generalize well across domains (i.e., sessions and subjects) without expensive supervised re-calibration. Contemporary methods cast this transfer learning (TL) problem as a multi-source/-target unsupervised domain adaptation (UDA) problem and address it with deep learning or shallow, Riemannian geometry aware alignment methods. Both directions have, so far, failed to consistently close the performance gap to state-of-the-art domain-specific methods based on tangent space mapping (TSM) on the symmetric positive definite (SPD) manifold. Here, we propose a theory-based machine learning framework that enables, for the first time, learning domain-invariant TSM models in an end-to-end fashion. To achieve this, we propose a new building block for geometric deep learning, which we denote SPD domain-specific momentum batch normalization (SPDDSMBN). A SPDDSMBN layer can transform domain-specific SPD inputs into domain-invariant SPD outputs, and can be readily applied to multi-source/-target and online UDA scenarios. In extensive experiments with 6 diverse EEG brain-computer interface (BCI) datasets, we obtain state-of-the-art performance in inter-session and -subject TL with a simple, intrinsically interpretable network architecture, which we denote TSMNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源