论文标题

学习适应功能以评估图像视觉相似性

Learning an Adaptation Function to Assess Image Visual Similarities

论文作者

Risser-Maroix, Olivier, Marzouki, Amine, Djeghim, Hala, Kurtz, Camille, Lomenie, Nicolas

论文摘要

人类的看法常规评估图像之间的相似性,无论是在决策和创造性思维方面。但是,基本的认知过程还没有真正理解,因此很难被计算机视觉系统模仿。使用深度体系结构的最先进方法通常是基于对图像分类任务所学的特征向量描述的图像的比较。因此,这种功能可以比较语义上相关的图像,但并非真正有效地比较图像在视觉上相似但语义无关。受到以前关于神经特征适应心理认知表征的作品的启发,我们在这里集中在学习视觉图像相似性的特定任务上。我们建议比较在不同的量表和内容数据集(例如Imagenet-21K,Imagenet-1K或vggface2)上进行预先训练的不同监督,半监督和自我监管的网络,以结论哪种模型可以是最佳的模型,只能通过近似于视觉cortex的近似和学习对应于近似的函数,并通过近似地进行了近似的学习范围。我们的实验在看起来完全看起来像图像数据集上的实验通过将最佳模型 @1的检索得分提高到2.25倍,从而突出了我们方法的兴趣。最近在ICIP 2021国际会议上接受了这项研究工作[1]。在这篇新文章中,我们通过使用和比较其他数据集中的新的预训练的功能提取器来扩展此前工作。

Human perception is routinely assessing the similarity between images, both for decision making and creative thinking. But the underlying cognitive process is not really well understood yet, hence difficult to be mimicked by computer vision systems. State-of-the-art approaches using deep architectures are often based on the comparison of images described as feature vectors learned for image categorization task. As a consequence, such features are powerful to compare semantically related images but not really efficient to compare images visually similar but semantically unrelated. Inspired by previous works on neural features adaptation to psycho-cognitive representations, we focus here on the specific task of learning visual image similarities when analogy matters. We propose to compare different supervised, semi-supervised and self-supervised networks, pre-trained on distinct scales and contents datasets (such as ImageNet-21k, ImageNet-1K or VGGFace2) to conclude which model may be the best to approximate the visual cortex and learn only an adaptation function corresponding to the approximation of the the primate IT cortex through the metric learning framework. Our experiments conducted on the Totally Looks Like image dataset highlight the interest of our method, by increasing the retrieval scores of the best model @1 by 2.25x. This research work was recently accepted for publication at the ICIP 2021 international conference [1]. In this new article, we expand on this previous work by using and comparing new pre-trained feature extractors on other datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源