论文标题
部分可观测时空混沌系统的无模型预测
On the average behavior of the Fourier coefficients of $j^{th}$ symmetric power $L$-function over a certain sequences of positive integers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we investigate the average behavior of the $n^{th}$ normalized Fourier coefficients of the $j^{th}$ ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,sym^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb{Z})$ over a certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$\sum_{\stackrel{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq {x}}{(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in\mathbb{Z}^{6}}}λ^{2}_{sym^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}),$$ where $x$ is sufficiently large, and $$L(s,sym^{j}f):=\sum_{n=1}^{\infty}\dfrac{λ_{sym^{j}f}(n)}{n^{s}}.$$ When $j=2$, the error term which we obtain, improves the earlier known result.