论文标题

肮脏的边缘费米液体中流体动力模式的量子干扰

Quantum Interference of Hydrodynamic Modes in a Dirty Marginal Fermi Liquid

论文作者

Wu, Tsz Chun, Liao, Yunxiang, Foster, Matthew S.

论文摘要

我们研究了具有无序的二维非Fermi液体的电运输,并确定了由于量子干扰而引起的半经典DC电导率的首次量子校正。我们考虑了一个具有$ n $ fermions fermions的系统,加上su($ n $)关键矩阵玻色子。在Syk模型的启发下,我们采用了双向野外形式主义,并得出了一组有限的鞍点方程,该方程式在很大程度上以fermionic和bosonic自我为限制。有趣的是,磨碎的疾病会引起边缘费米液体(MFL)自我能源。接下来,我们考虑围绕马鞍点的波动,并得出MFL-Finkel'Stein非线性Sigma模型。我们发现,AltShuler-Aronov量子电导校正可产生线性 - $ t $电阻率,在低温下可能会在Drude上占主导地位。量子校正的强温度依赖性是由于介导量子关键玻色子的快速松弛而产生的。我们验证我们的计算明确满足了半经典和量子水平的病房身份。我们的结果表明,即使准粒子遭受强(普朗克)的耗散,量子干扰仍在两粒子流体动力学模式下持续。

We study the electrical transport of a two-dimensional non-Fermi liquid with disorder, and we determine the first quantum correction to the semiclassical dc conductivity due to quantum interference. We consider a system with $N$ flavors of fermions coupled to SU($N$) critical matrix bosons. Motivated by the SYK model, we employ the bilocal field formalism and derive a set of finite-temperature saddle-point equations governing the fermionic and bosonic self-energies in the large-$N$ limit. Interestingly, disorder smearing induces a marginal Fermi liquid (MFL) self-energy for the fermions. We next consider fluctuations around the saddle points and derive a MFL-Finkel'stein nonlinear sigma model. We find that the Altshuler-Aronov quantum conductance correction gives linear-$T$ resistivity that can dominate over the Drude result at low temperature. The strong temperature dependence of the quantum correction arises due to rapid relaxation of the mediating quantum-critical bosons. We verify that our calculations explicitly satisfy the Ward identity at the semiclassical and quantum levels. Our results establish that quantum interference persists in two-particle hydrodynamic modes, even when quasiparticles are subject to strong (Planckian) dissipation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源