论文标题
自由能量耗散增强了小反应扩散系统中图灵模式的空间精度和鲁棒性
Free energy dissipation enhances spatial accuracy and robustness of Turing pattern in small reaction-diffusion systems
论文作者
论文摘要
准确,健壮的空间订单在生活系统中无处不在。 1952年,艾伦·图灵(Alan Turing)提出了一种基于基础反应扩散系统中空间翻译对称性的自发破坏的模式形成的优雅机制。关于图灵模式的动力和结构,很多人都了解了很多。但是,对于图灵模式的能量成本知之甚少。在这里,我们使用分析和数值方法研究了小型生化反应扩散系统的非平衡热力学。我们发现,图灵模式的发作需要最小的能量耗散才能驱动非平衡化学反应。上面的发作,只有一小部分总能量消耗来克服扩散以维持空间模式。我们表明,随着能量耗散的增加,在生化振荡系统中的时序误差和能量成本之间的相同权衡关系之后,定位误差随着能量耗散的增加而降低。在有限的系统中,我们发现特定的图灵模式仅存在于总分子数的有限范围内,并且能量耗散范围扩大了范围,从而增强了图灵模式对生物细胞中分子数波动的鲁棒性。这些结果在大肠杆菌中DNA隔离的MUK系统的现实模型中得到了验证,并且对于空间模式对ATP/ADP比率的准确性和鲁棒性的依赖性做出了可检验的预测。通常,此处开发的理论框架可用于研究空间扩展生化系统的非平衡热力学。
Accurate and robust spatial orders are ubiquitous in living systems. In 1952, Alan Turing proposed an elegant mechanism for pattern formation based on spontaneous breaking of the spatial translational symmetry in the underlying reaction-diffusion system. Much is understood about dynamics and structure of Turing patterns. However, little is known about the energetic cost of Turing pattern. Here, we study nonequilibrium thermodynamics of a small spatially extended biochemical reaction-diffusion system by using analytical and numerical methods. We find that the onset of Turing pattern requires a minimum energy dissipation to drive the nonequilibrium chemical reactions. Above onset, only a small fraction of the total energy expenditure is used to overcome diffusion for maintaining the spatial pattern. We show that the positioning error decreases as energy dissipation increases following the same tradeoff relationship between timing error and energy cost in biochemical oscillatory systems. In a finite system, we find that a specific Turing pattern exists only within a finite range of total molecule number, and energy dissipation broadens the range, which enhances the robustness of the Turing pattern against molecule number fluctuations in living cells. These results are verified in a realistic model of the Muk system underlying DNA segregation in E. coli, and testable predictions are made for the dependence of the accuracy and robustness of the spatial pattern on the ATP/ADP ratio. In general, the theoretical framework developed here can be applied to study nonequilibrium thermodynamics of spatially extended biochemical systems.