论文标题

总和内核的离散人群平衡模型的理论分析

Theoretical analysis of a discrete population balance model for sum kernel

论文作者

Kaushik, Sonali, Kumar, Rajesh, da Costa, Fernando P.

论文摘要

Oort-Hulst-Safronov方程,horsed as as as OHS是一个相关的人口平衡模型。由杜波夫斯基开发的离散形式是我们分析的主要重点。为凝结率$ v_ {i,j} \ leqs(i+j),$ $ \ forall i,j \ in \ mathbb {n} $建立了存在和密度保护。研究解决方案的可不同性是针对内核$ v_ {i,j} \ leqs i^α+j^α$的,其中$ 0 \leqsα\ leqs 1 $。本文最终处理了需要第二时界限的唯一性结果。

The Oort-Hulst-Safronov equation, shorterned as OHS is a relevant population balance model. Its discrete form, developed by Dubovski is the main focus of our analysis. The existence and density conservation are established for the coagulation rate $V_{i,j} \leqs (i+j),$ $\forall i,j \in \mathbb{N}$. Differentiability of the solutions is investigated for the kernel $V_{i,j} \leqs i^α+j^α$ where $0 \leqs α\leqs 1$. The article finally deals with the uniqueness result that requires the boundedness of the second moment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源