论文标题

开发可催化剂发现的可概括的大型机器学习模型的公开挑战

Open Challenges in Developing Generalizable Large Scale Machine Learning Models for Catalyst Discovery

论文作者

Kolluru, Adeesh, Shuaibi, Muhammed, Palizhati, Aini, Shoghi, Nima, Das, Abhishek, Wood, Brandon, Zitnick, C. Lawrence, Kitchin, John R, Ulissi, Zachary W

论文摘要

机器学到的催化剂发现潜力的发展主要集中在非常具体的化学和材料组成上。尽管有效地在可用材料之间插值,但这些方法努力遍布化学空间。大规模催化剂数据集的最新策划为建立通用机器学习潜力,涵盖化学和组成空间提供了机会。如果实现,则该潜力可能会加速各种应用程序(二氧化碳,NH3生产等)的催化剂发现过程,而无需目前需要的其他专业培训工作。开放催化剂2020(OC20)的发布已经开始,将异质催化和机器学习社区推向建立更准确,更健壮的模型。从这个角度来看,我们讨论了OC20最近发展的一些挑战和发现。我们检查了当前模型跨不同材料和吸附物的性能,以识别表现不佳的子集。然后,我们讨论围绕能源保存的一些建模工作,查找和评估局部最小值的方法以及扩大平衡数据的增强。为了补充社区正在进行的发展,我们最终以一些重要的挑战前景,这些挑战尚未对大规模的催化剂发现进行彻底探讨。

The development of machine learned potentials for catalyst discovery has predominantly been focused on very specific chemistries and material compositions. While effective in interpolating between available materials, these approaches struggle to generalize across chemical space. The recent curation of large-scale catalyst datasets has offered the opportunity to build a universal machine learning potential, spanning chemical and composition space. If accomplished, said potential could accelerate the catalyst discovery process across a variety of applications (CO2 reduction, NH3 production, etc.) without additional specialized training efforts that are currently required. The release of the Open Catalyst 2020 (OC20) has begun just that, pushing the heterogeneous catalysis and machine learning communities towards building more accurate and robust models. In this perspective, we discuss some of the challenges and findings of recent developments on OC20. We examine the performance of current models across different materials and adsorbates to identify notably underperforming subsets. We then discuss some of the modeling efforts surrounding energy-conservation, approaches to finding and evaluating the local minima, and augmentation of off-equilibrium data. To complement the community's ongoing developments, we end with an outlook to some of the important challenges that have yet to be thoroughly explored for large-scale catalyst discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源