论文标题

通过基于神经网络的事件细分来开发分层预期

Developing hierarchical anticipations via neural network-based event segmentation

论文作者

Gumbsch, Christian, Adam, Maurits, Elsner, Birgit, Martius, Georg, Butz, Martin V.

论文摘要

人类可以在各种时间尺度和分层级别上做出预测。因此,对事件编码的学习似乎起着至关重要的作用。在这项工作中,我们通过自主学习的潜在事件代码对层次预测的开发进行建模。我们提出了一个分层复发性神经网络结构,其感应学习偏见促进了压缩感觉运动序列的稀疏潜在状态的发展。更高级别的网络学会了预测潜在国家倾向于改变的情况。使用模拟的机器人操纵器,我们证明了系统(i)学习了准确反映数据事件结构的潜在状态,(ii)在较高级别上开发了有意义的时间抽象预测,并且(iii)产生了类似于在与婴儿进行研究中发现的目光行为相似的探究性行为。该体系结构为自主学习收集经验的压缩层次编码以及对这些编码产生适应性行为的开发提供了一步。

Humans can make predictions on various time scales and hierarchical levels. Thereby, the learning of event encodings seems to play a crucial role. In this work we model the development of hierarchical predictions via autonomously learned latent event codes. We present a hierarchical recurrent neural network architecture, whose inductive learning biases foster the development of sparsely changing latent state that compress sensorimotor sequences. A higher level network learns to predict the situations in which the latent states tend to change. Using a simulated robotic manipulator, we demonstrate that the system (i) learns latent states that accurately reflect the event structure of the data, (ii) develops meaningful temporal abstract predictions on the higher level, and (iii) generates goal-anticipatory behavior similar to gaze behavior found in eye-tracking studies with infants. The architecture offers a step towards the autonomous learning of compressed hierarchical encodings of gathered experiences and the exploitation of these encodings to generate adaptive behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源